385 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как решать задачи с бассейном

Как решать задачи с бассейном

Первая труба наполняет резервуар на 27 минут дольше, чем вторая. Обе трубы наполняют этот же резервуар за 18 минут. За сколько минут наполняет этот резервуар одна вторая труба?

Пусть вторая труба наполняет резервуар за минут, а первая — за + 27 минут. В одну минуту они наполняют соответственно и часть резервуара. Поскольку обе трубы, работая 18 минут, заполняют весь резервуар, имеем:

Следовательно, вторая труба заполняет заполнит весь резервуар за 27 минут.

Первая труба заполняет бассейн за 7 часов, а две трубы вместе — за 5 часов 50 минут. За сколько часов заполняет бассейн одна вторая труба?

Первая труба заполняет бассейн за 7 часов, две трубы вместе — за за 5 часов 50 минут то есть за 35/6 часа. Это значит, что за час первая труба заполняет 1/7 бассейна, а две трубы — 6/35 бассейна. При совместной работе производительности складываются, поэтому производительность второй трубы равна разности общей производительности и производительности первой трубы: бассейна в час. Тем самым, вторая труба заполняет бассейн за 35 часов.

То же самое решение составлением уравнения.

Поскольку первая труба заполняет бассейн за 7 часов, она заполняет одну седьмую бассейна в час. Пусть x — время, за которое вторая труба заполняет бассейн, в час она заполнит 1/х часть бассейна. Известно, что две трубы, работая одновременно, заполнили бассейн за 35/6 часа. Значит, в час они заполняли 6/35 бассейна. Тогда получаем:

Можно даже проще. Найдём время заполнения каждой трубы t, объём выполненной работы V и выполненную работу A (в нашем случае она будет равна 1, так как они заполнили 1 бассейн). Итак, время второй трубы обозначим за x, так как она нам не известна. А первая труба заполняет бассейн за 7 часов. Тогда объём работы 1 трубы будет равен 1/7. Аналогично 2 труба 1/х. Это мы нашли объём выполненной работы каждой трубой по отдельности. Нам известно что 2 трубы вместе выполнили данную работу за 5 часов 50 минут (то есть 5 целых 5/6). Тогда общий объём равен 6/35 (просто переведите 5 целых 5/6 в неправильную дробь и разделите 1 на на неё). Отсюда следует, что:

Статья в тему:  Можно ли ходить в бассейн с бородой

Добавили в пояснение.

Первая труба наполняет резервуар на 48 минут дольше, чем вторая. Обе трубы, работая одновременно, наполняют этот же резервуар за 45 минут. За сколько минут наполняет этот резервуар одна вторая труба?

Пусть вторая труба наполняет резервуар за x минут, а первая — за x + 48 минут. В одну минуту они наполняют соответственно и часть резервуара. Поскольку за 45 минут обе трубы заполняют весь резервуар, получаем:

Заметим, что при положительных x функция, находящаяся в левой части уравнения, убывает. Поэтому очевидное решение уравнения единственно. Решая это уравнение, получим Поскольку вторая труба заполняет резервуара в минуту, она заполнит весь резервуар за 72 минуты.

Первая труба наполняет резервуар на 90 минут дольше, чем вторая. Обе трубы наполняют этот же резервуар за 24 минуты. За сколько минут наполняет этот резервуар одна вторая труба?

Это задание ещё не решено, приводим решение прототипа.

Первая труба наполняет резервуар на 6 минут дольше, чем вторая. Обе трубы наполняют этот же резервуар за 4 минуты. За сколько минут наполняет этот резервуар одна вторая труба?

Пусть вторая труба наполняет резервуар за x минут, а первая — за x + 6 минут. В одну минуту они наполняют соответственно и часть резервуара. Поскольку за 4 минуты обе трубы заполняют весь резервуар, за одну минуту они наполняют одну четвертую часть резервуара:

Далее можно решать полученное уравнение. Но можно заметить, что при положительных x функция, находящаяся в левой части уравнения, убывает. Поэтому очевидное решение уравнения — единственно. Поскольку вторая труба заполняет резервуара в минуту, она заполнит весь резервуар за 6 минут.

Решение задач, связанных с различными процессами (наполнение бассейна и др.)

Решение задач, связанных с различными процессами.

Статья в тему:  Юность бассейн сколько метров

Пример. Бассейн наполняется двумя трубами действующими одновременно за 2 ч. За сколько ч может наполнить бассейн первая труба, если она, действуя одна, наполняет бассейн на 3 ч быстрее, чем вторая?

x=3

Задача: В одном резервуаре 380 м 3 воды, в другом 1500 м 3 . В первый резервуар каждый час поступает 80 м 3 воды, а из второго каждый час выкачивают по 60 м 3 воды. Через сколько часов в резервуарах воды станет поровну?

1) 80+60=140(м 3 /ч) – скорость сближения воды

2) 1500-380=1120(м 3 )

Ответ: через 8 ч.

Из пункта A в пункт B выехал велосипедист. Через 2 часа из пункта A в пункт B выехал мотоциклист, который приехал в пункт B одновременно с велосипедистом. Когда велосипедист и мотоциклист выезжают одновременно из пунктов A и B навстречу друг другу, они встречаются через 1 час 20 минут. Сколько времени велосипедист едет из A в B?

1. Два землекопа вместе тратят на рытье траншеи 8 часов. Если эту траншею будет рыть только первый землекоп, он затратит на работу на 12 часов меньше, чем потребовалось бы работающему в одиночку второму землекопу. Сколько времени потребуется на рытье траншеи каждому из землекопов?

2. Трактористы вспахали поле за 3 дня. В первый день они вспахали 4/7 поля, во второй день – 40% поля, а в третий день – все остальные 48 га. Найдите площадь поля

3. К бассейну подведены 3 трубы. Первая наполняет бассейн за 2 часа, вторая – за 3 часа, третья – за 6 часов. За какое время наполнят бассейн все три трубы одновременно?

4. Четыре пуговицы и три булавки стоят 26 копеек, а две булавки и 2 пуговицы 14 копеек. Сколько придется заплатить за 8 пуговиц и 7 булавок?

Математика по полочкам

Готовимся к экзамену по математике за период обучения на II ступени общего среднего образования

Статья в тему:  Бассейн под открытым небом который работает круглый год казань

21. Задачи на совместную работу

МАТЕРИАЛ ДЛЯ ПОВТОРЕНИЯ

Задачи на работу

В таких задачах всегда присутствуют одни и те же величины, их три:
– первая величина – это время, за которое выполняется та или иная работа. Обозначают время буквой t.
– вторая величина – объём работы: сколько сделано деталей, налито воды, вспахано полей и так далее. Обозначим объем буквой О.
– третья величина – производительность. По сути, это скорость работы. Обозначим производительность буквой П.

Скорость любой работы, т.е. производительность можно определить, как объём работы, сделанной за какое-то время.
Получим формулу для производительности: П = О : t.

Пример. Токарь делает 5 деталей в час. Сколько деталей он сделает за 7 часов?

Ответ: 4 часа

Пример. Красная Шапочка и Волк очень любят пирожки. Волк может съесть 24 пирожка за 4 часа, а Красная Шапочка – 35 пирожков за 7 часов. У Волка в корзинке 30 пирожков, а у Красной Шапочки – 20. Кто съест свои пирожки раньше, если они начали есть одновременно?

Задачи на совместную работу

Пример. Одна труба может наполнить бассейн за четыре часа. Вторая – за шесть часов. За какое время заполнится бассейн, если обе трубы включить одновременно?

Так как трубы работают вместе, складывают их производительности.
Для первой трубы, которая заполняет 1 бассейн за 4 часа: П = О:t = 1:4, т.е. за час первая труба заполнит 1/4 бассейна.
Для второй трубы: П = О:t = 1:6, т.е. вторая труба заполнит за час 1/6 бассейна.
Вместе, при совместной работе, трубы заполнят за час: 1/4 + 1/6 = 5/12 – две трубы за 1 час.
Объём работы 1 бассейн. Совместная производительность 5/12 бассейна в час.
t = О:П = 1 : 5/12 = 12/5 = 2,4 (ч.)
Ответ:2,4 часа.

Статья в тему:  Как быстро набрать воду в бассейн

УПРАЖНЕНИЯ

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

3. Два экскаватора роют траншею. Работая отдельно, первый может вырыть траншею за 10 дней, второй — за 16 дней. За сколько дней они выроют траншею, работая совместно?

4. Водоем заполняется первой трубой за 5 ч, а второй трубой за 4 ч. За сколько часов наполнится водоем, если будут одновременно работать две трубы?

5. Две наборщицы должны были набрать по 120 страниц каждая. Вторая наборщица набирала за 1 ч на 5 страниц мень­ше, чем первая, поэтому закончила работу на 2 ч позже. Сколько страниц в час набирала первая наборщица?

6. Две бригады рабочих должны по плану изготовить 240 деталей. Первая бригада работала 6 ч, а вторая — 5 ч. Сколь­ко деталей в час изготавливала каждая бригада, если первая делала на 4 детали в час меньше, чем вторая?

31. Текстовые задачи Читать 0 мин.

31.296. Текстовые задачи на производительность

Суть задач на производительность следующая: некоторую работу выполняют несколько человек или механизмов, работающих с постоянной для каждого из них производительностью. Они могут выполнять эту работу либо по отдельности, либо совместно друг с другом. Алгоритм решения здесь такой же, как и алгоритм решения задач на движение:

  1. Анализ данных.
  2. Составление таблицы.
  3. Составление уравнения.
  4. Решение уравнения.

Основные особенности решения задач на производительность:

  • Задачи на производительность схожи с задачами на движение. Основная формула при решении: V = v·t. Сравните её с формулой для решения задач на движение S = v·t. Роль скорости v здесь играет производительность труда, а роль расстояния S — объем работы V.
  • Объем работы может быть не дан по условию и его не нужно находить при решении задачи (нам просто напросто не важно, какой объем работы выполняется). В таком случае его можно обозначить какой-нибудь буквой, например, V или A. В процессе решения эта переменная, которой мы обозначили объем, сократится и её значение не придется находить.
  • Также, если объем работы не дан по условию, удобно принять его просто за 1; тогда время t, требующееся для выполнения всей работы, иv – производительность труда, связаны формулой:
  • В отличие от задач на движение, в задачах на производительность скорости выполнения работы не могут вычитаться, а могут только складываться друг с другом. Если два человека или механизма по отдельности работают с производительностями v1и v2, то вместе они будут работать быстрее (никак не медленнее), с суммарной производительностью v1+ v2, а время совместной работы будет равно:
Статья в тему:  Бассейн москвич когда закрывается 2018

Пример:

Первый рабочий за час делает на 5 деталей больше, чем второй, и выполняет заказ, состоящий из 200 деталей, на 2 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?

Решение:

В задаче требуется найти производительность второго рабочего. Примем его скорость за x. Заполним таблицу.

В условии задачи сказано, что первый рабочий выполняет заказ на 2 часа быстрее, чем второй. На основании этого составим уравнение:

Получаем два корня, x1= 20 и x2= –25. Второй корень не подходит, так как производительность не может быть отрицательной.

Виды задач на производительность:

1. Задачи на совместную работу:

Задачи на совместную работу — это тип задач, в которых объектами, выполняющими работу, являются люди или группы людей: рабочие, ученики, операторы, бригады рабочих и т п. Объекты могут выполнять работу по отдельности, а могут — вместе.

Разберем простой пример. Двум рабочим требуется выполнить работу. Допустим, первый рабочий выполняет всю работу за 10 часов, а второй — за 5. Давайте найдем, за сколько часов рабочие справятся с работой, выполняя её вместе.

Получается, что если принять весь объем работ за 1, то первый рабочий выполняет $ frac<1> <10>$ всей работы за час, а второй $ frac<1> <10>$ то есть $ frac<1> <10>$ всей работы за час. На рисунке весь объем работ — это 10 «кирпичиков», первый выполняет 1 «кирпичик» за час, а второй — 2. Тогда вместе они будут выполнять $ frac<1><10>+ frac<1><5>= frac<3> <10>$ всей работы за час, или 3 «кирпичика»:

Чтобы найти совместную производительность рабочих, мы сложили друг с другом их собственные производительности. Теперь, чтобы найти время, за которое оба рабочих справятся с работой, выполняя её вместе, разделим полный объем работ на совместную производительность:

Статья в тему:  Что делать если тонешь в бассейне

То есть вместе рабочие справятся с работой за 3 $ frac<1> <3>$ часа, или за 3 часа 20 минут.

2. Задачи на бассейны и трубы:

Отдельно можно выделить группу задач на производительность — задачи на заполнение бассейна несколькими трубами. В таких задачах рабочим будут соответствовать насосы (или трубы) разной производительности, а объему работы — объем бассейна или иного резервуара.

Рассмотрим пример. Две трубы наполняют бассейн за 6 часов, а одна первая труба наполняет бассейн за 9 часов. За сколько часов наполняет бассейн одна вторая труба?

Получается, что за 1 час две трубы наполняют $ frac<1> <6>$ часть бассейна, а одна первая труба наполняет $ frac<1> <9>$ часть бассейна: Так как вместе трубы наполняют бассейн водой со скоростью, равной сумме скоростей отдельно каждой из труб, то вторая труба наполняет бассейн со скоростью $ frac<1><6>– frac<1><9>= frac<1> <18>$.

Таким образом, вторая труба заполнит бассейн за $ 1/frac<1><18>=18 $ часов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: